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Abstract 

This presentation explores music through a variety of mathematical lenses including 

arithmetic, set theory, algebra, probability, statistics, geometry, and calculus. Music composed, 

arranged, and recorded for this address and featured throughout the presentation will illustrate 

relationships inherent between music and mathematics including comparisons between 

Pythagorean and equal-tempered tuning and mathematical analyses of musical elements 

including loudness, sound waves, and frequencies. Digital recording software was used to 

analyze data in order to quantify differences in rhythmic feel between musical phrases played by 

Sonny Rollins and John Coltrane. Additionally, jazz improvisations will generate music as 

functional set theory. 

 

 



 3 

Table of Contents 

Page 
Musical mathematicians ..................................................................................................................5 
Pythagoras and the musical ratios....................................................................................................6 
Equal-tempered tuning...................................................................................................................12 
Standardized tuning .......................................................................................................................13 
MIDI  note numbers and frequencies .............................................................................................14 
Differences between Pythagorean and equal-tempered tuning .....................................................18 
Math around writer’s block ...........................................................................................................20 
Sound wave properties and formulas.............................................................................................25 
Loudness ........................................................................................................................................26 
The geometry of chords and scales................................................................................................29 
Set theory and jazz improvisation..................................................................................................30 
Music as mathematics....................................................................................................................33 
Math and musical feel....................................................................................................................38 
References......................................................................................................................................46 
Appendix A....................................................................................................................................50 
Appendix B....................................................................................................................................51 
Appendix C....................................................................................................................................52 
Appendix D....................................................................................................................................53 
Appendix E ....................................................................................................................................54 
Appendix F ....................................................................................................................................55 
Appendix G....................................................................................................................................59 
 
Figures 
 Figure 1...................................................................................................................................6 
 Figure 2...................................................................................................................................7 
 Figure 3...................................................................................................................................7 
 Figure 4...................................................................................................................................8 
 Figure 5.................................................................................................................................11 
 Figure 6.................................................................................................................................13 
 Figure 7.................................................................................................................................17 
 Figure 8.................................................................................................................................19 
 Figure 9.................................................................................................................................22 
 Figure 10...............................................................................................................................23 
 Figure 11...............................................................................................................................24 
 Figure 12...............................................................................................................................26 
 Figure 13...............................................................................................................................28 
 Figure 14...............................................................................................................................29 
 Figure 15...............................................................................................................................30 
 Figure 16...............................................................................................................................31 
 Figure 17...............................................................................................................................33 

Figure 18...............................................................................................................................34 
Figure 19...............................................................................................................................35 
Figure 20...............................................................................................................................37 



 4 

Figure 21...............................................................................................................................40 
Figure 22...............................................................................................................................41 

 
Tables 
 Table 1 ....................................................................................................................................9 
 Table 2 ..................................................................................................................................20 
 Table 3 ..................................................................................................................................42 



 5 

Music as a Branch of Mathematics 

Musical Mathematicians 

During his presidential address regarding mathematics and music to the Mathematical 

Association of America on September 6th, 1923, Brown University’s Raymond Clare Archibald 

celebrated the ties binding mathematics and music from a historical perspective. From Hermann 

von Helmholtz’s suggestion that math and music share a “hidden bond” visible through the study 

of acoustics by Joseph Fourier, to the proclamation by Gottfried Leibniz that “music is a hidden 

exercise in arithmetic, of a mind unconscious of dealing with numbers” (Archibald, 2006, ¶ 3), 

the history of mathematics is replete with great spirits fascinated and inspired by music. To those 

in attendance at Vassar College, Archibald listed musical mathematicians including Pythagoras, 

Pierre-Louis Moreau de Maupertuis, William Herschel, János Bolyia, Augustus De Morgan, 

Henri Poincaire, Joseph Lagrange, and Albert Einstein to name a few.  

During a 1929 interview for The Saturday Evening Post entitled What Life Means to 

Einstein, George Sylvester Viereck writes that physicist, mathematician, and violinist Albert 

Einstein stated, “If I were not a physicist, I would probably be a musician. I often think in music. 

I live my daydreams in music. I see my life in terms of music… I get most joy in life out of 

music” (dos Santos, 2003). Einstein also said that, “Imagination is more important than 

knowledge. For knowledge is limited to all we now know and understand, while imagination 

embraces the entire world, and all there ever will be to know and understand” (ThinkExist.com, 

2006). 

History shows that Einstein was not alone. Fourier, Leonhard Euler, Daniel Bernoulli, 

and Johannes Kepler contributed immensely to the science of mathematics inspired or challenged 

by music. Nurtured by earth’s atmosphere, supported by mathematical pillars anchored in study, 
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fueled by imagination, necessitated by the need of a creative soul to share unique visions, and 

realized by a tireless dedication to the celebration of talented passion, music fills the air with 

sound, minds with wonder, and hearts with joy.  

Pythagoras and the Musical Ratios 

The Greek philosopher, mathematician, and musician Pythagoras defined the octave as a 

ratio of 1:2 by discovering that two tones produced on either side of a string bridged in a manner 

dividing the string into two sections measuring a single unit on one side of the bridge and two 

units on the other differed in pitch or frequency by one octave (Archibald, 1923). Figure 1 

illustrates a string designed to produce one distinct pitch when selecting the segment located on 

the right side of the bridge and a second pitch sounding one octave higher when plucking, 

striking, or bowing the segment of the string stretching to the left of the bridge.  

 

Figure 1. An illustration of a musical octave defined by Pythagoras as a ratio of 1:2. 

 
                            1 (higher octave)              2 (lower octave) 
 

 

                      3                            2                            1                               0  
                                                    ^ 
                                                Bridge 

 

Figure 1. Pythagoras defined the interval of one octave as a ratio of 1:2. The figure depicts a 

string divided into three equal parts where a bridge demarcates a ratio of 1:2 on the string. 

Plucking, striking, or bowing the string segment located left of the bridge will produce a tone 

one octave higher in pitch than the segment located right of the bridge. The numbers illustrate 

unit lengths with numbers 0 and 3 representing the endpoints of the string. 
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By plucking, striking, or bowing a single-stringed Greek musical instrument called a 

monochord depicted in Figure 2, Pythagoras also defined musical intervals of one fifth as a ratio 

of 2:3 and one fourth as a ratio of 3:4. The methodology applied by Pythagoras to define ratios 

for the fifth and fourth is illustrated in Figures 3 and 4. 

 

Figure 2. Drawing of a monochord. 

 

 

 

Figure 2. The monochord is a one-string musical instrument whose string is tightly suspended 

over a soundboard. This drawing of a monochord was obtained from the website: 

http://www.practicalphysics.org/go/Experiment_130.html  

 

Figure 3. An illustration of a musical fifth defined by Pythagoras a ratio of 2:3. 

 

                           2 (one-fifth higher than root tone), 3 (root tone)  

 

 

                      5                  4                    3                2                1                   0                                                  

                                                                ^ 

                                                           Bridge 

 

Figure 3. Pythagoras defined the interval of one fifth as a ratio of 2:3. The figure depicts a string 

divided into five equal parts where a bridge demarcates a ratio of 2:3 on the string. Plucking, 
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striking, or bowing the string segment located left of the bridge will produce a tone one fifth 

higher in pitch than the segment located right of the bridge. The numbers illustrate unit lengths 

with numbers 0 and 5 representing the endpoints of the string. 

 

Figure 4. An illustration of a musical fourth defined by Pythagoras a ratio of 3:4. 

 
 
                                          3                                                4 

 

 

                      7          6             5             4             3             2                1                0 

                                                                ^ 

                                                            Bridge 

 
Figure 4. Pythagoras defined the interval of one fourth as a ratio of 3:4. The figure depicts a 

string divided into seven equal parts where a bridge demarcates a ratio of 3:4 on the string. 

Plucking, striking, or bowing the string segment located left of the bridge will produce a tone 

one fourth higher in pitch than the segment located right of the bridge. The numbers illustrate 

unit lengths with numbers 0 and 7 representing the endpoints of the string. 

 

Based on the findings by Pythagoras illustrated in the preceding section, we can 

algebraically determine ratios for the remaining tones of the seven-note musical mode called 

Phrygian by the Greeks and known today as the Dorian mode. Table 1 enumerates the names of 

the original Greek modes and their corresponding modern counterparts (Frazer, 2006). Currently, 

the second mode of the C-Major scale is called the D-Dorian mode and contains the notes D-E-

F-G-A-B-C in ascending order.    
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Table 1. Greek modes names and musical notation (C-Major) 

Greek name Modern name Music notation 

Lydian Ionian 

 
Phrygian Dorian 

 
Dorian Phrygian 

 
Hypolydian Lydian 

 
Hypophrygian Mixolydian 

 
Hypodorian Aeolian 

 
Mixolydian Locrian 

 
 

 
Table 1. The left most column of the table lists the original Greek names for each mode of the 

major scale. The remaining columns list the modern names and corresponding musical notation 

for each of the seven modes. 

 

By applying the ratios provided by Pythagoras, it is possible to determine ratios for other 

fourths and fifths contained within the Dorian mode. Based on ratios for the octave of 1:2 and the 
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fifth of 2:3, we can determine that the ratio for the note E2 sounding one-fifth higher than A 

(2/3) is 4:9 (see Figure 4). In order to physically transpose the newly created fifth down one 

octave so that it sounds within the range between notes D1 and D2 one would need to double the 

length of the string producing the newly formed ratio and corresponding tone. Algebraically, 

such a transposition can be expressed in the form 

€ 

(2 /3)(2 /3)(2) = 8 /9 or the ratio for the note 

E2. The ratio for B, the sixth note of the D-Dorian mode, can subsequently be determined by 

applying a ratio of 2/3 to the value of E1, 

€ 

(8 /9)(2 /3) =16 /27. The ratio for the note C2 can be 

found by finding an interval one fourth higher than G or 

€ 

(3/4)(3/4) = 9 /16 and the ratio for the 

note F can be found by generating a ratio for a note one fifth lower than C2 (9:16). The ratio for 

a note F sounding one fifth lower than C2 (9:16) can be found by multiplying the ratio for C2 

(9:16) by the inverse ratio of one fifth or the ratio 3:2. Consequently, we can generate the ratio 

for F1 by calculating the expression 

€ 

(9 /16)(3/2) = 27 /32 . 
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Figure 5. Pythagorean ratios for the notes defining the D-Dorian mode. 
 
    

    D1             E       F         G               A                B      C2        D2 (octave) E2 

 

 

    1/1           8/9   27/32    3/4             2/3          16/27   9/16        1/2             4/9 

 

 

Figure 5. The figure details the computed ratios of the D-Dorian mode based on the findings of 

Pythagoras. Since a fifth is produced by a string length ratio of 2:3, consecutive fifths are 

produced by a ratio of 4:9. Once having computed a ratio for consecutive fifths the user can find 

ratios for the remaining elements by finding ratios for fourths and fifths sounding above and 

below each newly computed ratio.  

 

Applying a different algebraic approach we can compute the ratio for a whole step or 

distance between the fourth (G) and fifth (A) mode degrees in Figure 5 by finding a value for a 

ratio “x” so that the ratio 3:4 multiplied by a number “x” produces the ratio 2:3. Solving the 

equation 

€ 

3/4x = 2 /3 generates the ratio of 8/9 or 8:9 for a whole step. Applying this constant 

value for a whole step, we can generate the ratio for E, the second note displayed in Figure 4 by 

solving the expression 

€ 

D1x = Eor 

€ 

(1/1)(8 /9) = 8 /9. Inversely, since the distance between the 

fourth (G) and the third (F) of the Dorian mode is also a whole step, we can find a ratio value for 

F such that 

€ 

F(8 /9) = 3/4or 27/32. We subsequently discover the ratio for the sixth note of the 

mode (B) is 16/27 by multiplying the ratio 2/3 representing the fifth (A) by 8/9. Lastly, the ratio 

generating the seventh note (C) can be found by solving the expression 

€ 

C(8 /9) =1/2 or 9/16.  
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Equal-Tempered Tuning 

 The piano keyboard features an 88-note keyboard that divides each octave into twelve 

semitones or half steps. Based on Pythagoras discovery that the ratio of one octave is 1:2, we can 

begin to define the semitone by first expressing the relationship between two tones separated by 

one octave. A ratio of 1:2 between note (n) and its octave can be expressed as n:2n. 

Exponentially, a note n can be expressed as (1 * n) or (20 * n) while 2n can be rewritten as (21 * 

n). In order to divide one octave into twelve equal semitones as detailed in Figure 6, we can 

divide the distance between (n * 20) and (n * 21) into twelve equal segments written (n * 20/12), (n 

* 21/12), (n * 22/12), (n * 23/12), (n * 24/12), (n * 25/12), (n * 26/12), (n * 27/12), (n * 28/12), (n * 29/12), (n 

* 210/12), (n * 211/12), and (n * 212/12) respectively. The resulting frequencies, dividing the octave 

into twelve equidistant semitones, produce a chromatic scale and define the most widely used 

Western music tuning system called equal-tempered tuning. Additionally, the distance between 

adjacent semitones is divided into one hundred units called cents. 
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Figure 6. A graphic interpretation of one octave divided into twelve semitones. 

 
          f20/12    f21/12     f22/12    f23/12     f24/12    f25/12   f26/12   f27/12  f28/12   f29/12   f210/12    f211/12     f212/12 

 

        n0     n1     n2     n3      n4     n5     n6     n7     n8     n9    n10      n11     n12          

          

         semitone         

        f1                                                                                                         f2 (octave) 

 

A depiction of one octave divided into twelve semitones. 

Figure 6. The graphic diagrams twelve semitones equally dividing one octave ranging from 

semitone or frequency f to semitone f2. The distance between semitones is defined as 2n/12 where 

n represents the number corresponding to the position of the note in an ascending chromatic 

(12-tone) scale. Note that 20 = 1 and 20:21 is equivalent to 1:2 defining the Pythagorean ratio for 

the octave. 

 

Standardized Tuning 

 Slonimsky (2001) credits French acoustician Joseph Sauveur (1653–1716) as the first 

person to calculate the number of vibrations by a specific pitch and also offered the first 

scientific explanation for upper partials of a fundamental tone called overtones. Tennenbaum 

(1991) states that Sauveur quantified that the note “do” or middle C oscillated 256 times per 

second while studying tones created by organ pipes and vibrating strings. Sauveur’s collected 

writings, published by the French Academy of Science from 1700 to 1713 (Rasch, 2006), 

precede professor Rudolph Hertz’ (1847–1894) first transmission and reception of radio waves 

and measurements of the velocity and wavelength of electromagnetic waves by approximately 

175 years (Jenkins, 2006). The number of completed cycles per second by a “periodic 
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phenomenon” (Institute for Telecommunication Sciences, 2006) such as a sound wave is defined 

as one hertz (Hz) in honor or professor Hertz. Consequently, Sauveur’s measurement of middle 

C at 256 cycles per second translates to 256 Hz.  

During the 1940s a global movement to standardize tuning led to the general adoption of 

440 Hz as the corresponding frequency for the note “A” or “la” sounding one sixth above middle 

C or “do”. Based on Sauveur’s findings, the current tuning standard is somewhat higher than the 

tuning reference ranging between 427 and 430 Hz commonly used in Europe by composers such 

as Bach, Mozart, and Beethoven.  

MIDI Note Numbers and Frequencies 

In addition to music technology contributions including the development of the Prophet 5 

and Prophet 600 synthesizers, the American music technology company Sequential Circuits 

introduced a paper at the 1981 Audio Engineering Society (AES) convention proposing a new 

digital interface called the Universal Synthesizer Interface (USI) (Akins, 2007). In 1982, a 

consortium of manufacturers reviewed, tweaked, and accepted the work by Sequential Circuits 

developers as the standard electronic communication interface and called it Musical Instrument 

Digital Interface (MIDI). MIDI has become a standard and indispensable creative tool for 

manufacturers and musicians facilitating communication between computers, synthesizers, and a 

wide range of electronic devices since the introduction of built-in MIDI interfaces on the 

Sequential Circuits Prophet 600 in 1981 and other popular synthesizers such as the Yamaha DX-

7 synthesizer in 1982.  

 Though a MIDI controller can feature as many as 128 keys, pads, or buttons capable of 

triggering a maximum 128 notes defined as MIDI note number integers 0 - 127, a full-sized 

MIDI synthesizer keyboard features eighty-eight keys. As detailed by Valenti (1988), MIDI 
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coding designates a specific number to each key on a standard keyboard ranging from A0 = 21 on 

the left to C8 = 108 on the right. Note that the MIDI note numbers available on a controller 

featuring 128 keys or input sources will range from key C-1 = 0 at the extreme left (lowest pitch) 

to G9 = 127 at the extreme right (highest pitch). Though MIDI allows the user great flexibility 

with respect to tuning, transposition, and a wide range of expressive parameters, the standard 

setting for all MIDI keyboards assigns note number 60 to C4 (middle C). When depressed, each 

key on the MIDI keyboard produces a frequency corresponding to a note on the musical staff.  

 Finding the corresponding equal-tempered frequency for a note on a MIDI keyboard can 

be achieved by using MIDI note number 69 corresponding to A4 on the keyboard. In this 

instance we will choose MIDI note number 69 as a constant or reference because the frequency 

corresponding to this note is the current tuning standard 440 Hz. It is important to note that 

producers, composers, conductors, orchestras, and musicians in a variety of musical settings and 

instances sometimes choose a slightly higher standard tuning frequency such as 444 Hz.  

Given a frequency value for A4 such as 440 Hz, a corresponding MIDI note number (69), 

and discovering that an equal-tempered semitone “n” ranging between MIDI note 0 and 127 can 

be expressed as 2n/12 allows us to find the frequency for a MIDI note number (n – 69) positions 

away from A4 (69) by computing the math expression (440 * 2(n-69)/12). Since the equal-tempered 

octave is divided in increments of twelve and Pythagoras established that the ratio for an octave 

is 1:2, we can verify our findings by calculating the frequency values corresponding to notes any 

number of octaves lower or higher than the reference value for n (69). Note numbers 

corresponding to various octaves of n can be found by adding or subtracting multiples of twelve. 

For example, in order to find a MIDI note number one octave higher than 69 we simply compute 

69 + 12 = 81 and plug the new note number into the expression this way; frequency in Hz of 
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MIDI note number 81 = 440 * 2(81-69)/12. The solution for this expression renders a frequency 

value for MIDI note number 81 (A5) yields 880 Hz (440 * 212/12 = 440 * 2 = 880 Hz) in 

accordance with the 1:2 ratio defining the octave. Similarly, MIDI note number 93 produces a 

frequency of 1760 Hz (440 * 2(93-69)/12 = 440 * 224/12 = 440 * 22 = 1760). The frequency ratios 

corresponding to MIDI note numbers 69 (440 Hz) and 81 (880 Hz), and MIDI note numbers 69 

(440 Hz) and 93 (880 Hz) are 1:2 and 1:4 respectively concurs the findings by Pythagoras. The 

MIDI note number for a note A2 sounding two octaves (2 * 12) lower than A4 can be calculated 

by first solving the expression 69 – 24 = 45. Therefore, the frequency in Hz of note number 45 is 

110 Hz (440 * 2(45-69)/12 = 440 * 2-24/12 = 440 * 2-2 = 440/4 = 110 Hz). Once again, the ratio of 4:1 

between the frequencies corresponding to A4 (440 Hz) and A2 (110 Hz) respectively is in 

accordance with Pythagorean principles.  

Musicians, students, and other parties interested in finding the corresponding MIDI note 

number for a given frequency can use logarithms to simplify the mathematic expression, f 

(frequency in Hz) = 440 * 2(n-69)/12. The expression can be simplified as detailed in Figure 7. 
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Figure 7. Method for finding the corresponding MIDI note number for a given frequency 

 

Original expression f = 440 * 2(n-69)/12 

Simplification step 1 f/440 = 2(n-69)/12 

Simplification step 2 log2 (f/440) = (n-69)/12 

Simplification step 3 12 * log2 (f/440) = n – 69  

Formula for finding a MIDI note number 

given the frequency (Hz) of the MIDI note 

n = (12 * log2 (f/440)) + 69 

 

 

Figure 7. Given the frequency (f) for a note in Hz, it is possible to find the corresponding MIDI 

note number represented by the variable “n” using the formula detailed and simplified in the 

figure. 

 

 Applying the formula detailed in Figure 7, we can verify the earlier mentioned assertion 

that the note A above middle C used by Bach, Mozart, and Beethoven between the late 17th 

century and early 19th centuries was somewhat lower than the reference A4 (440 Hz) commonly 

used today. Sauveur defined the frequency of middle C as 256 Hz. Applying the MIDI note 

number corresponding to middle C (60) and substituting a reference frequency of 256 Hz yields 

the expression Hz = 256 * 2(n-60)/12. Since the MIDI note number corresponding to A above 

middle C is 69, we can find the frequency (f) for A above middle C typically used in Europe by 

solving the expression f = 256 * 2(69-60)/12. We can therefore verify that traditional European 

tuning was lower (A4 = 430.54 Hz) than modern tuning (A4 = 440 Hz) by solving the expression 

using a calculator or by inserting the function [=256*(POWER(2,(69-60)/12))] into a Microsoft 

Excel spreadsheet.  
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Macintosh users interested in finding MIDI note numbers for given frequencies and vice 

versa without having to physically compute the data can download a free note to frequency 

calculator widget courtesy of Jacklin Studios from the website located at 

http://www.jacklinstudios.com/software/notefreq/.  

Differences Between Pythagorean and Equal-Tempered Tuning 

 Though it is possible that Greek musicians may have been able to recall a fixed pitch 

from memory or used available reference tones such as those produced by bells, pipes, or 

environmental sources as a starting point, the ratios discovered by Pythagoras enabled musicians 

of the day to produce music without the need for a reference tuning-note. A comparison of 

frequencies values based on Pythagorean and equal-tempered tuning ratios illustrates differences 

between both tuning systems and highlights the fact that intervals sounded by ancient Greek 

instruments and those produced by instruments built to function in an equal-tempered tuning 

system sound slightly different.  
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Figure 8. The A major pentatonic scale. 

 
 

Figure 8. The figure displays musical notation for notes constructing the A major pentatonic 

scale in sequential perfect fifths and ascending stepwise order within one octave respectively. 

Standard MIDI note names specifying note placement on a piano keyboard are displayed above 

each note. 

 

 Figure 8 displays a musical staff containing five notes each separated by a perfect fifth. 

These notes also represent the elements of the A major pentatonic scale as detailed in the second 

measure of Figure 8. Using a reference frequency of 440 Hz for the note A4, Table 2 lists the 

corresponding frequency values for each note displayed in Figure 8 computed by applying 

Pythagorean ratios and the formula for equal-tempered tuning (see page 13).  
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Table 2. Comparison of frequencies for the A-major pentatonic scale based on Pythagorean and 

equal-tempered relationships. 

Reference  
Freq. (Hz) 

Note 
name 

MIDI note # Pythagore
an ratio 
(top) 

Pythagore
an ratio 
(bottom) 

Pythagore
an freq. 
(Hz) 

Equal-
tempered 
freq. (Hz) 

440.00 A4 69 1 1 440.00 440.00 
 A3 57 1 2 220.00 220.00 
 E4 64 3 2 330.00 329.63 
 B4 71 3 2 495.00 493.88 
 F#5 78 3 2 742.50 739.99 
 C#6 85 3 2 1113.75 1108.73 
 A3 57 1 2 220.00 220.00 
 B3 (from 

A3) 
59 9 8 247.50 246.94 

 C#4 (from 
F#4) 

61 3 4 278.44 277.18 

 E4 (from 
B3) 

64 8 9 330.00 329.63 

 F#4 (from 
B3) 

66 3 2 371.25 369.99 

 
 
Table 2. The data displayed in the table details frequencies corresponding to the notes displayed 

in Figure X based on Pythagorean ratios and equal-tempered tuning.   

 

Math Around Writer’s Block 

 A dreaded and frustrating state of the creative psyche for a composer, writer, or 

improvising musician is sometimes termed writer’s block, a slump, a funk, or a dry-spell. When 

encountered, any type of block can delay or prevent the productive output of creative, talented, 

and dedicated artists by placing an array of cognitive and emotional roadblocks in the way of the 

creative process ranging from confusion, anxiety and frustration to creative paralysis and self-

doubt. Musicians encountering such a block might employ a mathematical lens focused on 

probability to uncover a myriad of new themes, variations, and permutations capable of serving 

as alternate routes to renewed creativity.   
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 During a recent conversation regarding this presentation, Dr. Bernard Geltzer and the 

author queried the feasibility of determining the number of possible variations or permutations 

for a song. Possible answers to the original question emerged from our discussion triggering a 

startling reminder of the sheer magnitude of possible musical combinations available to the 

creative community.  

Exploring the possible combinations of a twelve-tone row, defined as a series of twelve 

non-repeating tones situated within a one-octave chromatic scale, produces a combination of 

twelve possible distinct pitches in the first position, eleven possible selections in the second 

position, ten possible notes in the third position decreasing in similar fashion down to one 

remaining pitch in the twelfth position. In mathematical terms, this twelve-tone sequence can be 

expressed as twelve-factorial (12! = 12 * 11 * 10 * 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 *1) generating 

479,001,600 possible non-repeating sequences of twelve chromatic tones. Admittedly, most 

popular or commercially successful music is not based on such twelve-tone sequences. 

Nonetheless, combinations numbering more than 479 million offer talented and interested parties 

a mammoth creative palette.  

When exploring a more commercial music approach, computing the possible 

combination of seven non-repeating tones confined within a one-octave major scale generates 

5,040 combinations (7!). If we change the parameters to include seven notes diatonic to a 

specific major scale without restricting the number of times a note may repeat the number of 

combinations grows to 77 or 823,543 combinations. It is not beyond the scope of reason to 

imagine that at least one of these combinations may yield inspiration for a new creative work. 

And yes, that number is still based on restricting note choices to a single octave. This is an 

important point since many songs such as America’s National Anthem cover a range exceeding 
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one octave. In fact, the traditional rendition of The Star Spangled Banner ranges one octave plus 

one fifth explaining why it is often a difficult song to perform for singers with limited ranges. 

Note that singers such as Whitney Houston and Mariah Carey, and instrumentalists including 

Arturo Sandoval and the author typically perform two-octave renditions of The Star Spangled 

Banner. 

 

Figure 9. The five modes of the A major pentatonic scale. 

 

 

Figure 9. The figure displays music notation for the five modes of the A major pentatonic scale. 

Note that each mode represents a new sequential ordering of the notes. 

Students of jazz improvisation spend time learning to identify, construct, play and apply 

pentatonic scales and their derivative structures in a variety of musical situations. Though many 

amateur and professional musicians limit their musical vocabulary to include twelve major 

pentatonic scales each based on one of the 12 major keys (see Figure 9), the number of available 

scales containing five unique pitches within one octave produces 95,040 (12 * 11 * 10 * 9 * 8) 

scale combinations, each generating five modes or orderings beginning on consecutive scale 

degrees of the parent pentatonic scale (see Figure 20). In total, the number of pentatonic scales 
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and their sequential orderings (modes) produces 475,200 (5 * 95,040) pentatonic combinations 

that can function as vehicles for composition, arranging, orchestration, improvisation, or 

exercises applied towards the development of technical proficiency. Anyone facing a creative 

musical block may take comfort knowing that the set of musical possibilities based on pentatonic 

scales numbers more than 475,000 combinations without introducing repeated notes. 

 

Figure 10. Traditional rendition of Twinkle, Twinkle Little Star  

 
Figure 10. The figure shows musical notation for the song Twinkle, Twinkle Little Star in the key 

of C Major.  

 

 The version of the well-known French melody Twinkle, Twinkle Little Star displayed in 

Figure 10 contains forty-two notes and two rests. How many permutations of this version of the 

song are possible considering that all orderings follow the exact rhythmic pattern detailed in 

Figure 10? If we restrict the note choices for new permutations to be contained within a one-

octave C major scale ranging from C4 to B4 and disallowing substitutions of notes for rests or 
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vice versa, each note could be substituted by one of the seven notes contained in the C major 

scale and each rest remains unchanged.  Possible permutations given these parameters number 

17,294,405 (742 + 2). Figure 11 illustrates two such possible variations. 

 

Figure 11. Two permutations based on Twinkle, Twinkle Little Star 

 

Figure 11. The figure presents music notation for two possible permutations based on the song 

Twinkle, Twinkle Little Star. The permutations apply a maximum of seven rhythmically 

equivalent substitutions for each note or rest in the song generating 17,294,405 (742 + 2) 

possible permutations based on the original version illustrated in Figure 7. 
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Sound Wave Properties and Formulas 

 Huber and Runstein (2005) point out that the velocity of a sound wave is temperature 

dependent. Consequently, the speed of a sound wave traveling “through the air at 68ºF (20ºC) is 

approximately 1130 feet per second (ft/sec)” (p. 38) and increases by 1.1 ft/sec with each 1ºF 

increase in temperature. As discussed, acoustic frequency measured in Hertz is defined as the 

number of complete cycles of a wave propagating during one second. Thus, a 60 Hz frequency (f 

= 60 Hz) completes 60 cycles per second while one cycle or period occurs every 1/60th of a 

second (period = 1/f). The wavelength (

€ 

λ ) can be expressed as the ratio between the velocity (v) 

and frequency (f) of the sound wave (

€ 

λ = v / f ). Therefore, a 60 Hz frequency sounding at a 

temperature of 68ºF yields a wave of length of approximately 18.83 feet.  

French mathematician Jean Baptiste Joseph Fourier is quoted as saying, “Mathematics 

compares the most diverse phenomena and discovers the secret analogies that unite them” 

(University of St. Andrews Scotland, 2006).  Fourier’s theorem states that, “any complex 

waveform is the sum of sinusoids” (Jayne, 2003). Sine waves, also called sinusoids, are periodic 

functions of the form: y = a sin b(x – c) + d or y = a cos b(x – c) + d (Hirsch & Schoen, 1985, p. 

158). Because sound waves produced by acoustic musical instruments and vocalists are complex 

waveforms, Fourier’s theorem provides a visionary tool for the study and development of 

synthesized sound, electronic music, and audio engineering. Figure 12 illustrates mathematical 

expressions for elements of a sine function including amplitude, period, phase shift, and vertical 

shift. Figure 12 is based on the work detailed by Hirsch and Schoen (1985, p. 158). 
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Figure 12. The sine function 

 

Sine function: y = a sin b(x – c) + d or y = a cos b(x – c) + d 

Amplitude (musically referred to as volume): |a| 

Period (one complete excursion of a sound wave): 2π/|b| 

Phase shift: c units to the right if c > 0 or |c| units to the left if c < 0  

Vertical shift: d units up if d > 0 or |d| units down if d < 0  

Figure 12. The figure details the mathematically elements and properties associated with the 

sine function. Movement along the axis mentioned in the figure refers to the x-axis and y-axis of 

the xy graph. 

Loudness 

 Sound results when a vibrating body generates longitudinal waves that propagate through 

mediums such as air and water causing atmospheric disturbances. The healthy human ear 

perceives miniscule atmospheric disturbances as sound. In fact, Huber and Runstein (2005) point 

out that one-microbar equals 1x10-6 (one-millionth) of standard atmospheric pressure and state 

that most people can hear atmospheric disturbances measuring 0.0002 microbar representing a 

change of 2x10-10 (20-billionths) in normal atmospheric pressure. In addition to being able to 

detect miniscule differences in atmospheric pressure, the range of human hearing extends from 

20 Hz to 20,000 Hz (20k Hz). 

One dyne (dyn) is defined as the energy required to force the acceleration of a mass 

weighing one gram (g) by one centimeter (cm) per second squared (sec2) 

(http://www.thefreedictionary.com/dyne, 2006). Huber and Runstein (2005) define sound-

pressure level (SPL) as the amount of acoustic pressure “built up within an atmospheric area”, 
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typically one square centimeter (cm2). When measured in dyne, sound-pressure levels are 

expressed as the ratio dyn/cm2.  

One decibel (dB), named after Alexander Graham Bell and meaning “1/10th of a bell” 

(Huber & Runstein, 2005, p. 52), represents a logarithmic value quantifying intensity differences 

between two energy levels including SPL, voltage (v), and wattage (w). The threshold of 

hearing, defined as the “minimum sound pressure that produces the phenomenon of hearing in 

most people” (Huber and Runstein, p. 137), is defined as the sound-pressure level reference 

(SPLref) measured at 0 dB equivalent to the previously described change in atmospheric pressure 

measuring 2x10-10 microbars. Huber and Runstein, Pierce (2006), and a host of sources detail the 

formula for computing an SPL rating in dB as: dB SPL = 20 log SPL/SPLref, where SPLref = 

0.0002 dyn/cm2. Since decibels measure the difference in intensity between two sources, 

computing the intensity difference between a sound level (sl) measuring 100 dyn/cm2 and a 

reference level (rl) measuring .01 dyn/cm2 can be accomplished by solving the expression, dB 

SPL = 20 log sl/rl, as demonstrated in Figure 13.  
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Figure 13. Comparison of sound level between a residence and an airline cabin. 

  

Let the reference level (rl) =  0.01 dyn/cm2 and the sound level (sl) = 100 dyn/cm2.  

Solving for the dB intensity difference between these two sound sources we find: 

dB intensity difference SPL = 20 log (sl/rl) 

dB intensity difference in SPL = 20 log (100/0.01) 

dB intensity difference in SPL = 20 [log 100 – log 0.01] 

dB intensity difference in SPL = 20 [2 – (-2)] 

dB intensity difference in SPL = 20 [4] 

dB intensity difference in SPL = 80 dB 

 

Figure 13. The figure illustrate a step by step method for finding the intensity difference 

measured in decibels (dB) between two sound sources whose levels are given in dyn/cm2. 

 

Alternatively, Vanderheiden (2006) asserts that a 20 dB difference in SPL represents a 

tenfold change in sound pressure. Using rules for logarithms to solve the expression 40 dB = 20 

log x, we can describe the intensity associated with a 40 dB difference in sound level between an 

average residence, defined as 50 dB by Huber and Runstein (2005, p. 54), and a sound level of 

90 dB produced inside the cabin of a commercial airplane (The Engineering ToolBox, 2005). 

Given the expression y = logb x is equivalent to by = x (Umbarger, 2006, p.6), we discover that a 

40 dB SPL increase is equivalent to a hundred-fold change in SPL by solving the equation 40 dB 

= 20 log x (see Figure 14). Verifying the data displayed in Figure 13 we show that the 10,000-
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fold change in intensity between the given reference level (rl = 0.01) and sound level (sl = 100) 

is equivalent to the solution of the logarithmic expression 80 dB = 20 log x (x = 104).  

 

Figure 14. Change in sound level intensity resulting from an increase of 40 dB SPL.  

SPL increased by 40 dB 

The variable x represents an x-fold change in level intensity. 

40 dB = 20 log x  

2 = log x  

x = 102 = 100 

 

Figure 14. The figure details a step-by-step method for finding the change in intensity given the 

amount of change in decibels. 

The Geometry of Chords and Scales 

 Chords, defined as “a combination of three or more pitches sounded simultaneously” 

(http://www.answers.com/topic/chord-1, 2006), offer a harmonic framework for musicians 

performing musical ideas in an improvised fashion. The relationship between chords and scales 

can be expressed through a geometric lens. Musical notation specifies changes in pitch in a 

vertical manner and rhythm or time in a horizontal manner. Thusly, three or more notes sounding 

at a singular moment in time are notated vertically. Studying the notated F7 altered chord in the 

first measure of the musical staff in Figure 15 illustrates the chord as a vertical structure. In 

contrast, the F# melodic minor scale constructed from the notes defining the F7 altered chord 

displayed in measures two through nine of the staff in Figure 15 illustrates the horizontal nature 

of a scale. Therefore, musicians can conceptualize chords as vertical structures represented or 
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defined by horizontal structures called scales when applying a geometric approach to 

improvisation.  

 

Figure 15. Musical notation for the F7 altered chord and its corresponding scale.  

 
Figure 15. The figure illustrates the vertical nature of an F7 altered chord and the horizontal 

nature of the scale constructed from the tones of the chord. A scale formed by a set of chord 

tones is often referred to as a chord-scale. The chord-scale corresponding to an F7 altered 

chord is the ascending mode of the F# melodic minor scale. 

 

Set Theory and Jazz Improvisation 

 As discussed, the equal-tempered octave is divided into twelve semitones. Using set 

notation, the elements (notes) of the C chromatic scale set (C-chromatic) can be expressed as C-

chromatic = {C, C#, D, Eb, E, F, F#, G, G#, A, Bb, B} (See Figure 16). The C Dorian scale (C-
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Dorian) can be expressed as a set containing seven elements (notes); C-Dorian = {C, D, Eb, F, G, 

A, Bb}. The set C-Dorian is a proper subset (

€ 

⊂) of the set C-chromatic because every element 

(

€ 

∈) in C-Dorian is also an element of the set C-chromatic but C-chromatic contains elements 

that are not elements (

€ 

∉) of C-Dorian. Therefore, C-Dorian 

€ 

⊂ C-chromatic and {C#, E, F#, G#, 

B} 

€ 

∉ C-Dorian. The elements of the set {C#, E, F#, G#, B} define the fifth mode of the E major 

pentatonic scale (E-pentatonic = {E, F#, G#, B, C#}).  Since the elements of set E-pentatonic are 

not elements of the set C-Dorian, E-pentatonic is the complement of set C-Dorian. Applying this 

information in a musical context provides a musician entrenched in a C Dorian tonality a set of 

notes with a strong and recognizable structure that will create harmonic and melodic tension 

when applied. Applying set theory in a musical context, E major pentatonic represents the 

harmonic structure most dissonant with C Dorian thus providing a creative tool useful when 

“stretching” harmony or forcing one tonality onto another.  

 

Figure 16. The C chromatic, C Dorian, and E major pentatonic scales. 

 

Figure 16. The figure shows musical notation for the C chromatic, C Dorian, and E major 

pentatonic scales in ascending fashion.  
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 Often when improvising, musicians playing single-note melodies strive to approximate or 

define a specific chord structure with a few notes. Set theory provides a useful method for 

achieving such an objective. Figure 17 displays musical notation for the C minor thirteenth chord 

set (Cmin13), the corresponding C Dorian (C-Dorian) chord-scale set, three major pentatonic 

scale subsets of C-Dorian, and five additional three-note subsets of C-Dorian. Using set notation 

to express relationships detailed in Figure 17 we notice that C-Dorian is a subset of (

€ 

⊆) Cmin13. 

The Bb pentatonic set 

€ 

⊂ C Dorian and the union (  

€ 

) of the Eb and F pentatonic sets produces 

the C Dorian scale set (Eb pentatonic   

€ 

 F pentatonic = C Dorian). The intersection (  

€ 

) of set C 

(1-2-5) = {C, D, G} and Eb (1-2-5) = {Eb, F, Bb}, expressed C (1-2-5)   

€ 

 Eb (1-2-5), renders the 

empty set (

€ 

∅) meaning that the sets have no elements in common. Musicians wanting to avoid 

note redundancy may benefit from the study and application of harmonic or scalar combinations 

of subsets whose intersections produce the empty set. Contrastingly, subsets containing common 

elements offer musicians tones common to those subsets while still affording the musician 

alternative note choices.   
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Figure 17. Music notation for subsets of the C minor thirteenth chord (Cmin13). 

 
Figure 17. The figure displays music notation for a C minor thirteenth chord, the C Dorian 

scale, the Eb, F, and Bb major pentatonic scales, and five sets of three note series diatonic to C 

Dorian comprised of major seconds and a perfect fourth (1-2-5). 

 

Music as Mathematics 

Music notation specifies a precise occurrence in time of a distinct harmonic or melodic 

event or sequence of events. Simultaneously, music displayed on a staff can also detail changes 

in frequency (pitch), amplitude (volume), style, length, and speed over a prescribed period of 

time quantified in measures (bars) and beats. Rhythm, or event occurrence and sequence, is 

notated horizontally from left to right while pitch changes are notated vertically on a variety of 

staff systems typically containing five lines, each separated by one of four spaces. Musicians 

learn to translate information shown outside the staff through recognition of additional lines 

called ledger lines (see Figure 18). As do most initial staves or staves containing a variance in 
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time signature of a musical work, the staff visible in Figure 18 also displays time signatures 

defining the number of beats (pulses) occurring in each bar and the type of rhythmic unit (note) 

equaling one beat. Time signatures are specified as positive integers or ratios greater than one (> 

1) while counting number multiples of two define the default rhythmic value receiving or 

equaling one beat per measure. Mathematically speaking, musicians count or compute numeric 

data while interpreting and performing simultaneous and often frequent changes along related 

vertical and horizontal axis (see Figure 19).  

 

Figure 18. Musical staff.  

 
Figure 18. The figure displays a musical staff containing various time signatures, notes within 

the staff, and notes located outside the staff defined by tangent or embedded ledger lines. The 

suggested tempo is one hundred beats per minute notated by the marking quarter note equals 

one hundred.  
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Figure 19. Musical staff with superimposed imaginary x and y-axis. 

 
Figure 19. The figure illustrates a musical staff with superimposed imaginary x and y-axis 

demarcating changes in pitch as vertical events along an imaginary y-axis and changes in 

rhythm or time as horizontal events along an imaginary x-axis.  

 

In order to study musical data in a mathematical fashion one can convert musical rhythms 

into numbers or coordinates along an x-axis. For this discussion, the author will use Microsoft 

Excel to generate numerical values by defining the measure, beat, and note position of each 

musical event. Though the process can be tedious, the precise location of a recorded musical 

event can be defined using digital recording software such as Digidesign’s Pro Tools. Digital 

recording and MIDI software divide one beat into ticks. For the purpose of this discussion, each 

beat will be divided into 960 ticks. Based on this information one can generate a numerical value 

for rhythmic events by adding the values for the measure number, the beat number, and tick 

position. In order to identify the location of a musical event occurring at measure one, beat one, 

and tick one of a measure containing four beats as 1.0 we can use the formula: measure number 

+(((beat number – 1) + (tick position/(4*960))).  
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Notes or pitches can be easily converted to numbers and consequent points on the y-axis 

by using their corresponding MIDI note numbers. Applying this technique enables us to convert 

musical notation (see Figure 20) to numerical data and input the data into Microsoft Excel in 

order to generate graphs and even equations for the general trend lines of the graphs. Though 

beyond the scope of this presentation, mathematicians proficient in calculus and differential 

equations can generate functions representing such graphs. Future study is needed to determine 

the musical consequences resulting from derivatives of music-based functions. 
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Figure 20. Musical notation converted to numerical data and a corresponding graph. 

 
Tenor 
Note 

Piano 
note 

Note 
number 

Y 
coordinate Measure Beat Tick 

X 
coordinate 

C4 Bb3 46 -14 1 1 0 1.000 
D4 C3 48 -12 1 1 480 1.125 
G4 F3 53 -7 1 2 0 1.250 
C5 Bb4 58 -2 1 2 480 1.375 
D5 C4 60 0 1 3 0 1.500 
G5 F 4 65 5 1 3 480 1.625 
C6 Bb5 70 10 1 4 0 1.750 
D6 C5 72 12 1 4 480 1.875 
G6 F5 77 17 2 1 0 2.000 
D6 C5 72 12 2 1 480 2.125 
C6 Bb4 70 10 2 2 0 2.250 
G5 F4 65 5 2 2 480 2.375 
D5 C4 60 0 2 3 0 2.500 
C5 Bb4 58 -2 2 3 480 2.625 
G4 F3 53 -7 2 4 0 2.750 
D4 C3 48 -12 2 4 480 2.875 
C4 Bb2 46 -14 3 1 0 3.000 
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Figure 20. The figure shows musical notation for a sequence of notes based on the Dorian scale. 

The subsequent table details the process designed in Microsoft Excel to convert the musical data 

into numbers and coordinates on the xy-graph. The data is then graphed and a trend line and 

corresponding function is calculated and graphed using Excel’s chart function.   

 

Math and Musical Feel 

 Quantization is a process used by MIDI programmers to adjust the rhythmic placement or 

feel of a musical event. Computer software such as Digidesign’s Pro Tools, Mark of the 

Unicorn’s Digital Performer, and Propellerhead’s ReCycle allow musicians to manipulate both 

MIDI data and recorded audio in order to achieve a more precise performance of their creative 

vision. As a saxophonist and student of jazz one becomes keenly aware of differences and 

similarities in feel, style, and note choice between jazz musicians. Researching giants of jazz 

enables us to enjoy, examine, and analyze their contributions with intent to synthesize and apply 

this newly gained information in a unique manner. As a doctoral student one recognizes a 

similarity between empirical research and jazz improvisation. In fact, it is this colleague’s 
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observation that jazz researchers (musicians) encounter a high degree of difficulty presenting 

their findings because their works must be delivered to audiences in an improvised fashion.  

 John Coltrane and Sonny Rollins are jazz giants who can be heard trading four-measure 

musical ideas on the Sonny Rollins Quarter 1956 Prestige Records release entitled Tenor 

Madness. In jazz lingo, an exchange of musical ideas alternating every four measures is called 

trading fours. Figures 21 and 22 display transcriptions of Coltrane and Rollins trading fours 

while improvising on Sonny Rollins’ blues composition Tenor Madness. 
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Figure 21. Musical notation of transcribed musical phrases by John Coltrane. 

 

Figure 21. The notation displays the musical notation for a series of four-measure improvised 

phrases performed by John Coltrane during a recording with Sonny Rollins. 
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Figure 22. Musical notation of transcribed musical phrases by Sonny Rollins. 

 
Figure 22. The notation displays the musical notation for a series of four-measure improvised 

phrases performed by Sonny Rollins during a recording with John Coltrane. 

 

 Converting the recorded data into numbers using Pro Tools and Excel one finds that both 

Coltrane and Rollins placed their chosen notes in varying rhythmic positions. Table 3 shows the 

numerical data corresponding to the phrase played by Coltrane in measures 11-13 (Figure 21) 
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and the answering phrase played by Rollins in bars 13-15 (Figure 22). These two phrases were 

chosen because of the similarity of note choices by the saxophonists and represent an example of 

call and response dialogue common during trading of musical ideas in jazz improvisation. 

 

Table 3. Numerical representation of musical phrases performed by John Coltrane and Sonny 

Rollins. 

John 
Coltrane 
phrases 
measures 
11-13 
(Figure 
21) 

MIDI note 
number 

Y-axis 
coordinate 

Measure 
number 

Beat 
number 
(based on 
4 
measures 
per bar) 

Ticks 
position 
(based on 
960 ticks 
per beat) 

X-axis 
coordinate 

C4 58 -2 11 1 67 11.02 
C4 58 -2 11 1 952 11.25 
E4 62 2 11 2 541 11.39 
D4 60 0 11 3 173 11.55 
F4 63 3 11 3 599 11.66 
A4 67 7 11 4 42 11.76 
C5 70 10 11 4 572 11.90 
E4 62 2 12 1 38 12.01 
G4 65 5 12 1 704 12.18 
A4 67 7 12 1 943 12.25 
C5 70 10 12 2 648 12.42 
Bb4 68 8 12 4 574 12.90 
A4 67 7 12 4 769 12.95 
G4 65 5 13 1 164 13.04 
       
Sonny 
Rollins 
phrases 
measures 
11-13 
(Figure 
21) 

MIDI note 
number 

Y-axis 
coordinate 

Measure 
number 

Beat 
number 
(based on 
4 
measures 
per bar) 

Ticks 
position 
(based on 
960 ticks 
per beat) 

X-axis 
coordinate 

C4 58 -2 13 1 182 13.05 
G3 53 -7 13 1 681 13.18 
C4 58 -2 13 2 138 13.29 
E4 62 2 13 2 654 13.42 
C4 58 -2 13 3 142 13.54 
D4 60 0 13 3 691 13.68 
E4 62 2 13 3 874 13.73 
G4 65 5 13 4 674 13.93 
F4 63 3 14 1 86 14.02 
C4 58 -2 14 1 746 14.19 
F4 63 3 14 2 140 14.29 
C4 58 -2 14 2 591 14.40 
F#4 64 4 14 3 19 14.50 
G4 65 5 14 3 667 14.67 
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A4 67 7 14 3 940 14.74 
C5 70 10 14 4 560 14.90 
D5 72 12 15 4 765 15.95 
E5 74 14 15 1 197 15.05 
C5 70 10 15 1 829 15.22 
 

Table 3. The table details the note choices and placements of musical phrases improvised by 

John Coltrane and Sonny Rollins on the Impulse release entitled Tenor Madness. The music was 

transcribed and then analyzed by the author using Digidesign’s Pro Tools software. 

 

 Inspecting the data we notice that Coltrane and Rollins place notes on similar beats of a 

bar in very different locations. If we divide each beat exactly in half, the first note would occur at 

tick zero while the second note would occur at tick 480. In this example, John Coltrane plays the 

note on beat one of measures 11 and 12 at tick positions 67 and 38 respectively. Sonny Rollins 

positions the notes performed on beat one of bars 13 and 14 on ticks 182 and 86 respectively. 

Though each musician varies the rhythmic placement of the note in random fashion, the general 

trend is for Coltrane to place his notes closer to the beginning of the beat than Rollins. In fact, 

Coltrane places the second note of his phrase on beat one, tick 952 slightly in advance of the 

second beat (see Table 3). Using jazz terminology, we could say that Sonny lays back while 

Coltrane plays more on top throughout the course of this musical dialogue. A possible cause for 

this tendency is that Rollins is responding to a statement by Coltrane. Further study should be 

conducted in order to better assess the general tendencies and causal effects inherent when 

reacting to a musical statement in an improvised manner. Additionally, the sample data is 

insufficient for purposes of a general trend regarding rhythmic placement by the musicians. A 

rigorous study of Coltrane’s and Rollins’ rhythmic tendencies may provide an interesting topic 

for extensive future research but is beyond the scope of this discussion. 
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 The process used to analyze the information began by importing the commercially 

obtained audio recording available on compact disc (CD) into Pro Tools using the import audio 

feature. Since the original master is a mixed and mastered two-track recording, it is difficult to 

isolate individual performances by musicians whose primary responsibility is generating and 

maintaining a steady tempo such as the bassist or drummer. Working to maintain a steady tempo 

in a traditional jazz setting, bassist Paul Chambers is playing one note at the start of each beat 

(http://www.allaboutjazz.com/php/article.php?id=23731). Using Chambers’ performance as the 

guide for defining the distance between beats in order to calculate a tempo and produce a grid 

dividing the performance into quantifiable units requires isolation or enhancement of the bass 

frequencies. The bass frequency range produced by this recording extends from 40 Hz to well 

over 200 Hz. For purposes of this project, the author isolated the bass response of the original 

recording by applying a low-shelf equalizer (EQ) to enhance frequencies from 60 Hz to 150 Hz 

while simultaneously reducing all other frequencies. The equalized signal was then amplified 

and recorded onto a separate Pro Tools track. Using the newly created isolated bass track, a 

tempo map and grid were created by finding the start of each bass waveform (note) and 

calculating the tempo for each beat using the Pro Tools Beat Detective feature. Jazz musicians 

rarely record using a reference click track or tempo guide and thus tend to generate a variable 

tempo. In fact, rhythm section instruments such as the bass and drums often anchor the tempo 

helping to hold the ensemble together. Based on this knowledge, the author generated a reference 

tempo guide in order to study note placement by Coltrane and Rollins.  

The subsequent findings detailed in this paper are for educational purposes only and in no 

way reflect an opinion about the quality of the performances by John Coltrane or Sonny Rollins. 

In this colleague’s opinion, these men are musical giants whose contributions serve as a guiding 
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example of tangible musical results generated when creative talent, study, dedicated energy, and 

application are synthesized. Mathematics, as applied in this example, provides insight while 

celebrating the complexity and beauty of the creative mind. 
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Appendix A 

Major Scale Subsets 
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Appendix B 

Dorian Mode Subsets 
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Appendix C 

Melodic Minor Scale Subsets 
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Appendix D 

Augmented Scale Subsets 
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Appendix E 

Diminished Scale Subsets 
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Appendix F 

Twinkle, Twinkle Little Star for Saxophone Quartet 

Music arranged, performed, and recorded by Ed Calle 
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Appendix G 

Audio Examples 

All music featured in Appendix G was performed and recorded by Ed Calle  

Recorded at One-Take Studios, Miami, FL 

 

Twinkle, Twinkle Little Star (Arranged by Ed Calle) 

Equal-tempered tuning version 

Pythagorean tuning version 

 

Doriana (Ed Calle, 2006) (36th Street Music/BMI) 

 Equal-tempered tuning version 

Pythagorean tuning version 

 

 

 

 


